102 research outputs found

    Oxygen in the Earth System

    Get PDF
    Atmospheric oxygen is produced and consumed by life on Earth, and the ozone layer protects life on Earth from harmful solar UV radiation. The research on oxygen in the Earth system is of interest to many different geoscientific communities, from paleoclimatology to aeronomy. I provide a brief overview of the research activities and their motivations. In situ measurements and remote sensing of atmospheric oxygen are described. The global evolution, distribution, and trends of atmospheric oxygen are discussed

    Hovmöller diagrams of climate anomalies in NCEP/NCAR reanalysis from 1948 to 2009

    Get PDF
    Atmospheric and oceanic reanalysis data of the past 60years are visualized by time-latitude cross sections which inform about temporal and latitudinal variability, changes, and meridional circulation of the climate system on time scales from years to decades. The diagrams ease the understanding of climate dynamics in a similar way as the Hovmöller diagram has clarified the zonal propagation of synoptic-scale waves in a latitude band. Thus the time-latitude cross sections are referred to as Hovmöller diagrams of climate anomalies. Various parameters are selected at the Earth's surface level: air temperature, pressure, sea surface temperature, column-integrated atmospheric water vapour (IWV), surface relative humidity, and surface wind. Contour lines of one parameter are overlayed on the color image of the other parameter so that relations and coincidences of trends, oscillations, and sudden changes of the climate are revealed. Temporal variations of IWV and surface relative humidity appear to be related to the strength of the Southern polar front jet. In case of ENSO 1997/1998, the equatorial IWV enhancement is accompanied by acceleration of the meridional circulation cells of the Southern Hemisphere. Meridional surface wind data suggest the existence of double polar cells in both hemispheres. The Southern polar cells switched to a higher circulation speed in 1997, and surface relative humidity increased over Antarctica. A sudden and persistent decrease of surface pressure occurred in Antarctica around 1980. Since 2000, a rapid increase of surface air temperature, sea surface temperature, and IWV occurs in the Northern Hemisphere. These results of NCEP/NCAR reanalysis have to be cross-validated with other reanalyses, climate models, and pure observations which will be a major endeavou

    Characterising the three-dimensional ozone distribution of a tidally locked Earth-like planet

    Get PDF
    We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (ΩTLE = 1/365 days) differs from that of our present-day Earth (PDE) (ΩPDE = 1/1 day). The middle atmosphere reaches a steady state a symptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [(Ox) ≈ (O3)]. At these altitudes, the lifetime of odd oxygen is ~16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. In the middle stratosphere of the TLE, we find high ozone values on the day side, due to the increased production of atomic oxygen on the day side, where it immediately recombines with molecular oxygen to form ozone. In contrast, the ozone is depleted on the night side, due to changes in the solar radiation distribution and the presence of a downwelling. As a result of the reduced Coriolis force, the tropical and extratropical air masses are well mixed and the global temperature distribution of the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to the PDE, the total ozone column global mean is reduced by ~19.3 %. The day side and the night side total ozone column means are reduced by 23.21 and 15.52 %, respectively. Finally, we present the total ozone column (TOC) maps as viewed by a remote observer for four phases of the TLE during its revolution around the star. The mean TOC values of the four phases of the TLE vary by up to 23 %

    Observation of an Extremely Dry Atmospheric Air Column above Bern

    Get PDF
    The water vapour column density or vertically integrated water vapour (IWV) ranges from about 8 mm in winter to about 25 mm in summer in Bern, Switzerland. However, there can be day episodes when IWV drops to 2 mm or even less so that the atmosphere is extremely dry. We selected an event in February 2021 when the tropospheric water radiometer TROWARA measured a mean IWV value of about 1.5 ± 0.2 mm for a time interval of about one day in Bern. The ECMWF reanalysis ERA5 indicated a slightly higher IWV value of about 2.2 ± 0.4 mm where the uncertainty is the standard deviation of IWV during the time of IWV depression. The ERA5 profiles of relative humidity and specific humidity during this episode are reduced by 50% and more compared to the monthly mean profiles. On a global map, it can be seen that Bern is within a mesoscale dry region on that day with descending wind. Back trajectory analysis gives the result that the dry air masses in Bern came from the North and the trajectories are descending in altitude so that dry air from the mid troposphere came into the lower troposphere. These descending air masses from the North explain the minimum of IWV observed in Bern on 13–14 February 2021. The surface climate in Switzerland was dominated by a cold wave at that time. At the same time, severe cold waves occurred in Greece and Northern America

    Snow Virga above the Swiss Plateau Observed by a Micro Rain Radar

    Get PDF
    Studies of snow virga precipitation are rare. In this study, we investigated data from a vertically pointing Doppler Micro Rain Radar (MRR) in Bern, Switzerland, from 2008 to 2013 for snow virga precipitation events. The MRR data were reprocessed using the radar data processing algorithm of Garcia-Benardi et al., which allows the reliable determination of the snow virga precipitation rate. We focus on a long-lasting snow virga event from 17 March 2013, supported by atmospheric reanalysis data and atmospheric back trajectories. The snow virga was associated with a wind shear carrying moist air and snow precipitation in the upper air layers and dry air in the lower air layers. The lowest altitudes reached by the precipitation varied between 300 m and 1500 m above the ground over the course of the event. The duration of the snow virga was 22 h. In disagreement with the MRR observations, ERA5 reanalysis indicated drizzle at the ground over a time segment of 4 h during the snow virga event

    Atmospheric Effects and Precursors of Rainfall over the Swiss Plateau

    Get PDF
    In this study, we investigate the characteristics of atmospheric parameters before, during, and after rain events in Bern, Switzerland. Ground-based microwave radiometer data of the TROpospheric WAter RAdiometer (TROWARA) with a time resolution of 7 s, observations of a weather station, and the composite analysis method are used to derive the temporal evolution of rain events and to identify possible rainfall precursors during a 10-year period (1199 available rain events). A rainfall climatology is developed using parameters integrated water vapor (IWV), integrated liquid water (ILW), rain rate, infrared brightness temperature (TIR), temperature, pressure, relative humidity, wind speed, and air density. It was found that the IWV is reduced by about 2.2 mm at the end of rain compared to the beginning. IWV and TIR rapidly increase to a peak at the onset of the rainfall. Precursors of rainfall are that the temperature reaches its maximum around 30 to 60 min before rain, while the pressure and relative humidity are minimal. IWV fluctuates the most before rain (obtained with a 10 min bandpass). In 60% of rain events, the air density decreases 2 to 6 h before the onset of rain. The seasonality and the duration of rain events as well as the diurnal cycle of atmospheric parameters are also considered. Thus, a prediction of rainfall is possible with a true detection rate of 60% by using the air density as a precursor. Further improvements in the nowcasting of rainfall are possible by using a combination of various atmospheric parameters which are monitored by a weather station and a ground-based microwave radiometer

    Response of Total Column Ozone at High Latitudes to Sudden Stratospheric Warmings

    Get PDF
    The total column ozone (TCO) at northern high latitudes is increased over a course of 1–2 months after a major sudden stratospheric warming as a consequence of enhanced ozone eddy transport and diffusive ozone fluxes. We analyzed ground-based measurements of TCO from Oslo, Andøya and Ny Ålesund from 2000 to 2020. During this time interval, 15 major sudden stratospheric warmings (SSWs) occurred. The observed TCO variations are in a good agreement with those of ECMWF Reanalysis v5 (ERA5), showing that TCO from ERA5 is reliable, even during dynamically active periods. ERA5 has the advantage that it has no data gaps during the polar night. We found that TCO was increased by up to 190 DU after the SSW of February 2010, over one month. The composite analysis of the 15 SSWs provided the result that TCO is increased on average by about 50 DU over one month after the central date of the SSW

    Quasi 18 h wave activity in ground-based observed mesospheric H2O over Bern, Switzerland

    Get PDF
    Observations of oscillations in the abundance of middle-atmospheric trace gases can provide insight into the dynamics of the middle atmosphere. Long-term, high-temporal-resolution and continuous measurements of dynamical tracers within the strato- and mesosphere are rare but would facilitate better understanding of the impact of atmospheric waves on the middle atmosphere. Here we report on water vapor measurements from the ground-based microwave radiometer MIAWARA (MIddle Atmospheric WAter vapor RAdiometer) located close to Bern during two winter periods of 6 months from October to March. Oscillations with periods between 6 and 30 h are analyzed in the pressure range 0.02–2 hPa. Seven out of 12 months have the highest wave amplitudes between 15 and 21 h periods in the mesosphere above 0.1 hPa. The quasi 18 h wave signature in the water vapor tracer is studied in more detail by analyzing its temporal evolution in the mesosphere up to an altitude of 75 km. Eighteen-hour oscillations in midlatitude zonal wind observations from the microwave Doppler wind radiometer WIRA (WInd RAdiometer) could be identified within the pressure range 0.1–1 hPa during an ARISE (Atmospheric dynamics Research InfraStructure in Europe)-affiliated measurement campaign at the Observatoire de Haute-Provence (355 km from Bern) in France in 2013. The origin of the observed upper-mesospheric quasi 18 h oscillations is uncertain and could not be determined with our available data sets. Possible drivers could be low-frequency inertia-gravity waves or a nonlinear wave–wave interaction between the quasi 2-day wave and the diurnal tide

    Water vapor transport in the lower mesosphere of the subtropics: a trajectory analysis

    Get PDF
    The Institute of Applied Physics operates an airborne microwave radiometer AMSOS that measures the rotational transition line of water vapor at 183.3 GHz. Water vapor profiles are retrieved for the altitude range from 15 to 75 km along the flight track. We report on a water vapor enhancement in the lower mesosphere above India and the Arabian Sea. The measurements took place on our flight from Switzerland to Australia and back in November 2005 conducted during EC- project SCOUT-O3. We find an enhancement of up to 25% in the lower mesospheric H<sub>2</sub>O volume mixing ratio measured on the return flight one week after the outward flight. The origin of the air is traced back by means of a trajectory model in the lower mesosphere and wind fields from ECMWF. During the outward flight the air came from the Atlantic Ocean around 25 N and 40 W. On the return flight the air came from northern India and Nepal around 25 N and 90 E. Mesospheric H<sub>2</sub>O measurements from Aura/MLS confirm the transport processes of H<sub>2</sub>O derived by trajectory analysis of the AMSOS data. Thus the large variability of H<sub>2</sub>O VMR during our flight is explained by a change of the winds in the lower mesosphere. This study shows that trajectory analysis can be applied in the mesosphere and is a powerful tool to understand the large variability in mesospheric H<sub>2</sub>O
    • …
    corecore